Real transformer
The ideal transformer model neglects the following basic linear aspects of real transformers:
(a) Core losses, collectively called magnetizing current losses, consisting of
Hysteresis losses due to nonlinear magnetic effects in the transformer core, and Eddy current losses due to joule heating in the core that are proportional to the square of the transformer's applied voltage.
(b) Unlike the ideal model, the windings in a real transformer have non-zero resistances and inductances associated with:
Joule losses due to resistance in the primary and secondary windings
Leakage flux that escapes from the core and passes through one winding only resulting in primary and secondary reactive impedance.
(c) similar to an inductor, parasitic capacitance and self-resonance phenomenon due to the electric field distribution. Three kinds of parasitic capacitance are usually considered and the closed-loop equations are provided
Capacitance between adjacent turns in any one layer;
Capacitance between adjacent layers;
Capacitance between the core and the layer(s) adjacent to the core;
Inclusion of capacitance into the transformer model is complicated, and is rarely attempted; the ‘real’ transformer model’s equivalent circuit does not include parasitic capacitance. However, the capacitance effect can be measured by comparing open-circuit inductance, i.e. the inductance of a primary winding when the secondary circuit is open, to a short-circuit inductance when the secondary winding is shorted.
No comments:
Post a Comment